\(\int \frac {\sin ^2(c+d x) \tan ^7(c+d x)}{a+a \sin (c+d x)} \, dx\) [880]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 199 \[ \int \frac {\sin ^2(c+d x) \tan ^7(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {187 \log (1-\sin (c+d x))}{256 a d}-\frac {443 \log (1+\sin (c+d x))}{256 a d}+\frac {\sin (c+d x)}{a d}+\frac {a^2}{96 d (a-a \sin (c+d x))^3}-\frac {13 a}{128 d (a-a \sin (c+d x))^2}+\frac {69}{128 d (a-a \sin (c+d x))}+\frac {a^3}{64 d (a+a \sin (c+d x))^4}-\frac {7 a^2}{48 d (a+a \sin (c+d x))^3}+\frac {41 a}{64 d (a+a \sin (c+d x))^2}-\frac {2}{d (a+a \sin (c+d x))} \]

[Out]

187/256*ln(1-sin(d*x+c))/a/d-443/256*ln(1+sin(d*x+c))/a/d+sin(d*x+c)/a/d+1/96*a^2/d/(a-a*sin(d*x+c))^3-13/128*
a/d/(a-a*sin(d*x+c))^2+69/128/d/(a-a*sin(d*x+c))+1/64*a^3/d/(a+a*sin(d*x+c))^4-7/48*a^2/d/(a+a*sin(d*x+c))^3+4
1/64*a/d/(a+a*sin(d*x+c))^2-2/d/(a+a*sin(d*x+c))

Rubi [A] (verified)

Time = 0.15 (sec) , antiderivative size = 199, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {2915, 12, 90} \[ \int \frac {\sin ^2(c+d x) \tan ^7(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {a^3}{64 d (a \sin (c+d x)+a)^4}+\frac {a^2}{96 d (a-a \sin (c+d x))^3}-\frac {7 a^2}{48 d (a \sin (c+d x)+a)^3}-\frac {13 a}{128 d (a-a \sin (c+d x))^2}+\frac {41 a}{64 d (a \sin (c+d x)+a)^2}+\frac {69}{128 d (a-a \sin (c+d x))}-\frac {2}{d (a \sin (c+d x)+a)}+\frac {\sin (c+d x)}{a d}+\frac {187 \log (1-\sin (c+d x))}{256 a d}-\frac {443 \log (\sin (c+d x)+1)}{256 a d} \]

[In]

Int[(Sin[c + d*x]^2*Tan[c + d*x]^7)/(a + a*Sin[c + d*x]),x]

[Out]

(187*Log[1 - Sin[c + d*x]])/(256*a*d) - (443*Log[1 + Sin[c + d*x]])/(256*a*d) + Sin[c + d*x]/(a*d) + a^2/(96*d
*(a - a*Sin[c + d*x])^3) - (13*a)/(128*d*(a - a*Sin[c + d*x])^2) + 69/(128*d*(a - a*Sin[c + d*x])) + a^3/(64*d
*(a + a*Sin[c + d*x])^4) - (7*a^2)/(48*d*(a + a*Sin[c + d*x])^3) + (41*a)/(64*d*(a + a*Sin[c + d*x])^2) - 2/(d
*(a + a*Sin[c + d*x]))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 90

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] &&
(IntegerQ[p] || (GtQ[m, 0] && GeQ[n, -1]))

Rule 2915

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)
*(x_)])^(n_.), x_Symbol] :> Dist[1/(b^p*f), Subst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2)*(c + (d/b)*x
)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, c, d, m, n}, x] && IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2,
 0]

Rubi steps \begin{align*} \text {integral}& = \frac {a^7 \text {Subst}\left (\int \frac {x^9}{a^9 (a-x)^4 (a+x)^5} \, dx,x,a \sin (c+d x)\right )}{d} \\ & = \frac {\text {Subst}\left (\int \frac {x^9}{(a-x)^4 (a+x)^5} \, dx,x,a \sin (c+d x)\right )}{a^2 d} \\ & = \frac {\text {Subst}\left (\int \left (1+\frac {a^4}{32 (a-x)^4}-\frac {13 a^3}{64 (a-x)^3}+\frac {69 a^2}{128 (a-x)^2}-\frac {187 a}{256 (a-x)}-\frac {a^5}{16 (a+x)^5}+\frac {7 a^4}{16 (a+x)^4}-\frac {41 a^3}{32 (a+x)^3}+\frac {2 a^2}{(a+x)^2}-\frac {443 a}{256 (a+x)}\right ) \, dx,x,a \sin (c+d x)\right )}{a^2 d} \\ & = \frac {187 \log (1-\sin (c+d x))}{256 a d}-\frac {443 \log (1+\sin (c+d x))}{256 a d}+\frac {\sin (c+d x)}{a d}+\frac {a^2}{96 d (a-a \sin (c+d x))^3}-\frac {13 a}{128 d (a-a \sin (c+d x))^2}+\frac {69}{128 d (a-a \sin (c+d x))}+\frac {a^3}{64 d (a+a \sin (c+d x))^4}-\frac {7 a^2}{48 d (a+a \sin (c+d x))^3}+\frac {41 a}{64 d (a+a \sin (c+d x))^2}-\frac {2}{d (a+a \sin (c+d x))} \\ \end{align*}

Mathematica [A] (verified)

Time = 6.10 (sec) , antiderivative size = 133, normalized size of antiderivative = 0.67 \[ \int \frac {\sin ^2(c+d x) \tan ^7(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {561 \log (1-\sin (c+d x))-1329 \log (1+\sin (c+d x))+\frac {8}{(1-\sin (c+d x))^3}-\frac {78}{(1-\sin (c+d x))^2}+\frac {414}{1-\sin (c+d x)}+768 \sin (c+d x)+\frac {12}{(1+\sin (c+d x))^4}-\frac {112}{(1+\sin (c+d x))^3}+\frac {492}{(1+\sin (c+d x))^2}-\frac {1536}{1+\sin (c+d x)}}{768 a d} \]

[In]

Integrate[(Sin[c + d*x]^2*Tan[c + d*x]^7)/(a + a*Sin[c + d*x]),x]

[Out]

(561*Log[1 - Sin[c + d*x]] - 1329*Log[1 + Sin[c + d*x]] + 8/(1 - Sin[c + d*x])^3 - 78/(1 - Sin[c + d*x])^2 + 4
14/(1 - Sin[c + d*x]) + 768*Sin[c + d*x] + 12/(1 + Sin[c + d*x])^4 - 112/(1 + Sin[c + d*x])^3 + 492/(1 + Sin[c
 + d*x])^2 - 1536/(1 + Sin[c + d*x]))/(768*a*d)

Maple [A] (verified)

Time = 1.76 (sec) , antiderivative size = 121, normalized size of antiderivative = 0.61

method result size
derivativedivides \(\frac {\sin \left (d x +c \right )-\frac {1}{96 \left (\sin \left (d x +c \right )-1\right )^{3}}-\frac {13}{128 \left (\sin \left (d x +c \right )-1\right )^{2}}-\frac {69}{128 \left (\sin \left (d x +c \right )-1\right )}+\frac {187 \ln \left (\sin \left (d x +c \right )-1\right )}{256}+\frac {1}{64 \left (1+\sin \left (d x +c \right )\right )^{4}}-\frac {7}{48 \left (1+\sin \left (d x +c \right )\right )^{3}}+\frac {41}{64 \left (1+\sin \left (d x +c \right )\right )^{2}}-\frac {2}{1+\sin \left (d x +c \right )}-\frac {443 \ln \left (1+\sin \left (d x +c \right )\right )}{256}}{d a}\) \(121\)
default \(\frac {\sin \left (d x +c \right )-\frac {1}{96 \left (\sin \left (d x +c \right )-1\right )^{3}}-\frac {13}{128 \left (\sin \left (d x +c \right )-1\right )^{2}}-\frac {69}{128 \left (\sin \left (d x +c \right )-1\right )}+\frac {187 \ln \left (\sin \left (d x +c \right )-1\right )}{256}+\frac {1}{64 \left (1+\sin \left (d x +c \right )\right )^{4}}-\frac {7}{48 \left (1+\sin \left (d x +c \right )\right )^{3}}+\frac {41}{64 \left (1+\sin \left (d x +c \right )\right )^{2}}-\frac {2}{1+\sin \left (d x +c \right )}-\frac {443 \ln \left (1+\sin \left (d x +c \right )\right )}{256}}{d a}\) \(121\)
risch \(\frac {i x}{a}-\frac {i {\mathrm e}^{i \left (d x +c \right )}}{2 a d}+\frac {i {\mathrm e}^{-i \left (d x +c \right )}}{2 a d}+\frac {2 i c}{d a}-\frac {i \left (6321 \,{\mathrm e}^{5 i \left (d x +c \right )}+975 \,{\mathrm e}^{i \left (d x +c \right )}+6321 \,{\mathrm e}^{9 i \left (d x +c \right )}+975 \,{\mathrm e}^{13 i \left (d x +c \right )}+2502 \,{\mathrm e}^{11 i \left (d x +c \right )}-652 i {\mathrm e}^{6 i \left (d x +c \right )}+2502 \,{\mathrm e}^{3 i \left (d x +c \right )}-810 i {\mathrm e}^{4 i \left (d x +c \right )}+6004 \,{\mathrm e}^{7 i \left (d x +c \right )}-414 i {\mathrm e}^{2 i \left (d x +c \right )}+414 i {\mathrm e}^{12 i \left (d x +c \right )}+810 i {\mathrm e}^{10 i \left (d x +c \right )}+652 i {\mathrm e}^{8 i \left (d x +c \right )}\right )}{192 \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )^{6} \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )^{8} d a}-\frac {443 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{128 a d}+\frac {187 \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{128 d a}\) \(284\)
parallelrisch \(\frac {2956+384 \left (20+\sin \left (7 d x +7 c \right )+5 \sin \left (5 d x +5 c \right )+9 \sin \left (3 d x +3 c \right )+5 \sin \left (d x +c \right )+2 \cos \left (6 d x +6 c \right )+12 \cos \left (4 d x +4 c \right )+30 \cos \left (2 d x +2 c \right )\right ) \ln \left (\sec ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+561 \left (20+\sin \left (7 d x +7 c \right )+5 \sin \left (5 d x +5 c \right )+9 \sin \left (3 d x +3 c \right )+5 \sin \left (d x +c \right )+2 \cos \left (6 d x +6 c \right )+12 \cos \left (4 d x +4 c \right )+30 \cos \left (2 d x +2 c \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+1329 \left (-20-\sin \left (7 d x +7 c \right )-5 \sin \left (5 d x +5 c \right )-9 \sin \left (3 d x +3 c \right )-5 \sin \left (d x +c \right )-2 \cos \left (6 d x +6 c \right )-12 \cos \left (4 d x +4 c \right )-30 \cos \left (2 d x +2 c \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )+8676 \sin \left (3 d x +3 c \right )+4748 \sin \left (5 d x +5 c \right )+784 \sin \left (7 d x +7 c \right )+126 \cos \left (2 d x +2 c \right )-972 \cos \left (4 d x +4 c \right )-1918 \cos \left (6 d x +6 c \right )-192 \cos \left (8 d x +8 c \right )+5224 \sin \left (d x +c \right )}{384 a d \left (20+\sin \left (7 d x +7 c \right )+5 \sin \left (5 d x +5 c \right )+9 \sin \left (3 d x +3 c \right )+5 \sin \left (d x +c \right )+2 \cos \left (6 d x +6 c \right )+12 \cos \left (4 d x +4 c \right )+30 \cos \left (2 d x +2 c \right )\right )}\) \(438\)

[In]

int(sec(d*x+c)^7*sin(d*x+c)^9/(a+a*sin(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/d/a*(sin(d*x+c)-1/96/(sin(d*x+c)-1)^3-13/128/(sin(d*x+c)-1)^2-69/128/(sin(d*x+c)-1)+187/256*ln(sin(d*x+c)-1)
+1/64/(1+sin(d*x+c))^4-7/48/(1+sin(d*x+c))^3+41/64/(1+sin(d*x+c))^2-2/(1+sin(d*x+c))-443/256*ln(1+sin(d*x+c)))

Fricas [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 187, normalized size of antiderivative = 0.94 \[ \int \frac {\sin ^2(c+d x) \tan ^7(c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {768 \, \cos \left (d x + c\right )^{8} + 1182 \, \cos \left (d x + c\right )^{6} - 1674 \, \cos \left (d x + c\right )^{4} + 636 \, \cos \left (d x + c\right )^{2} + 1329 \, {\left (\cos \left (d x + c\right )^{6} \sin \left (d x + c\right ) + \cos \left (d x + c\right )^{6}\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) - 561 \, {\left (\cos \left (d x + c\right )^{6} \sin \left (d x + c\right ) + \cos \left (d x + c\right )^{6}\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \, {\left (384 \, \cos \left (d x + c\right )^{6} + 207 \, \cos \left (d x + c\right )^{4} - 54 \, \cos \left (d x + c\right )^{2} + 8\right )} \sin \left (d x + c\right ) - 112}{768 \, {\left (a d \cos \left (d x + c\right )^{6} \sin \left (d x + c\right ) + a d \cos \left (d x + c\right )^{6}\right )}} \]

[In]

integrate(sec(d*x+c)^7*sin(d*x+c)^9/(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

-1/768*(768*cos(d*x + c)^8 + 1182*cos(d*x + c)^6 - 1674*cos(d*x + c)^4 + 636*cos(d*x + c)^2 + 1329*(cos(d*x +
c)^6*sin(d*x + c) + cos(d*x + c)^6)*log(sin(d*x + c) + 1) - 561*(cos(d*x + c)^6*sin(d*x + c) + cos(d*x + c)^6)
*log(-sin(d*x + c) + 1) - 2*(384*cos(d*x + c)^6 + 207*cos(d*x + c)^4 - 54*cos(d*x + c)^2 + 8)*sin(d*x + c) - 1
12)/(a*d*cos(d*x + c)^6*sin(d*x + c) + a*d*cos(d*x + c)^6)

Sympy [F(-1)]

Timed out. \[ \int \frac {\sin ^2(c+d x) \tan ^7(c+d x)}{a+a \sin (c+d x)} \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)**7*sin(d*x+c)**9/(a+a*sin(d*x+c)),x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.22 (sec) , antiderivative size = 186, normalized size of antiderivative = 0.93 \[ \int \frac {\sin ^2(c+d x) \tan ^7(c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {\frac {2 \, {\left (975 \, \sin \left (d x + c\right )^{6} + 207 \, \sin \left (d x + c\right )^{5} - 2088 \, \sin \left (d x + c\right )^{4} - 360 \, \sin \left (d x + c\right )^{3} + 1569 \, \sin \left (d x + c\right )^{2} + 161 \, \sin \left (d x + c\right ) - 400\right )}}{a \sin \left (d x + c\right )^{7} + a \sin \left (d x + c\right )^{6} - 3 \, a \sin \left (d x + c\right )^{5} - 3 \, a \sin \left (d x + c\right )^{4} + 3 \, a \sin \left (d x + c\right )^{3} + 3 \, a \sin \left (d x + c\right )^{2} - a \sin \left (d x + c\right ) - a} + \frac {1329 \, \log \left (\sin \left (d x + c\right ) + 1\right )}{a} - \frac {561 \, \log \left (\sin \left (d x + c\right ) - 1\right )}{a} - \frac {768 \, \sin \left (d x + c\right )}{a}}{768 \, d} \]

[In]

integrate(sec(d*x+c)^7*sin(d*x+c)^9/(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

-1/768*(2*(975*sin(d*x + c)^6 + 207*sin(d*x + c)^5 - 2088*sin(d*x + c)^4 - 360*sin(d*x + c)^3 + 1569*sin(d*x +
 c)^2 + 161*sin(d*x + c) - 400)/(a*sin(d*x + c)^7 + a*sin(d*x + c)^6 - 3*a*sin(d*x + c)^5 - 3*a*sin(d*x + c)^4
 + 3*a*sin(d*x + c)^3 + 3*a*sin(d*x + c)^2 - a*sin(d*x + c) - a) + 1329*log(sin(d*x + c) + 1)/a - 561*log(sin(
d*x + c) - 1)/a - 768*sin(d*x + c)/a)/d

Giac [A] (verification not implemented)

none

Time = 0.41 (sec) , antiderivative size = 147, normalized size of antiderivative = 0.74 \[ \int \frac {\sin ^2(c+d x) \tan ^7(c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {\frac {5316 \, \log \left ({\left | \sin \left (d x + c\right ) + 1 \right |}\right )}{a} - \frac {2244 \, \log \left ({\left | \sin \left (d x + c\right ) - 1 \right |}\right )}{a} - \frac {3072 \, \sin \left (d x + c\right )}{a} + \frac {2 \, {\left (2057 \, \sin \left (d x + c\right )^{3} - 5343 \, \sin \left (d x + c\right )^{2} + 4671 \, \sin \left (d x + c\right ) - 1369\right )}}{a {\left (\sin \left (d x + c\right ) - 1\right )}^{3}} - \frac {11075 \, \sin \left (d x + c\right )^{4} + 38156 \, \sin \left (d x + c\right )^{3} + 49986 \, \sin \left (d x + c\right )^{2} + 29356 \, \sin \left (d x + c\right ) + 6499}{a {\left (\sin \left (d x + c\right ) + 1\right )}^{4}}}{3072 \, d} \]

[In]

integrate(sec(d*x+c)^7*sin(d*x+c)^9/(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

-1/3072*(5316*log(abs(sin(d*x + c) + 1))/a - 2244*log(abs(sin(d*x + c) - 1))/a - 3072*sin(d*x + c)/a + 2*(2057
*sin(d*x + c)^3 - 5343*sin(d*x + c)^2 + 4671*sin(d*x + c) - 1369)/(a*(sin(d*x + c) - 1)^3) - (11075*sin(d*x +
c)^4 + 38156*sin(d*x + c)^3 + 49986*sin(d*x + c)^2 + 29356*sin(d*x + c) + 6499)/(a*(sin(d*x + c) + 1)^4))/d

Mupad [B] (verification not implemented)

Time = 11.30 (sec) , antiderivative size = 485, normalized size of antiderivative = 2.44 \[ \int \frac {\sin ^2(c+d x) \tan ^7(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {\frac {315\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{15}}{64}+\frac {251\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{14}}{32}-\frac {1411\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{13}}{64}-\frac {607\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{12}}{16}+\frac {2183\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{11}}{64}+\frac {6287\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{10}}{96}-\frac {2749\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9}{192}-\frac {803\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8}{24}-\frac {2749\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7}{192}+\frac {6287\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6}{96}+\frac {2183\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{64}-\frac {607\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4}{16}-\frac {1411\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{64}+\frac {251\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{32}+\frac {315\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{64}}{d\,\left (a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{16}+2\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{15}-4\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{14}-10\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{13}+4\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{12}+18\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{11}+4\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{10}-10\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9-10\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8-10\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7+4\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+18\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+4\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-10\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3-4\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+2\,a\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+a\right )}+\frac {187\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-1\right )}{128\,a\,d}-\frac {443\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+1\right )}{128\,a\,d}+\frac {\ln \left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}{a\,d} \]

[In]

int(sin(c + d*x)^9/(cos(c + d*x)^7*(a + a*sin(c + d*x))),x)

[Out]

((315*tan(c/2 + (d*x)/2))/64 + (251*tan(c/2 + (d*x)/2)^2)/32 - (1411*tan(c/2 + (d*x)/2)^3)/64 - (607*tan(c/2 +
 (d*x)/2)^4)/16 + (2183*tan(c/2 + (d*x)/2)^5)/64 + (6287*tan(c/2 + (d*x)/2)^6)/96 - (2749*tan(c/2 + (d*x)/2)^7
)/192 - (803*tan(c/2 + (d*x)/2)^8)/24 - (2749*tan(c/2 + (d*x)/2)^9)/192 + (6287*tan(c/2 + (d*x)/2)^10)/96 + (2
183*tan(c/2 + (d*x)/2)^11)/64 - (607*tan(c/2 + (d*x)/2)^12)/16 - (1411*tan(c/2 + (d*x)/2)^13)/64 + (251*tan(c/
2 + (d*x)/2)^14)/32 + (315*tan(c/2 + (d*x)/2)^15)/64)/(d*(a + 2*a*tan(c/2 + (d*x)/2) - 4*a*tan(c/2 + (d*x)/2)^
2 - 10*a*tan(c/2 + (d*x)/2)^3 + 4*a*tan(c/2 + (d*x)/2)^4 + 18*a*tan(c/2 + (d*x)/2)^5 + 4*a*tan(c/2 + (d*x)/2)^
6 - 10*a*tan(c/2 + (d*x)/2)^7 - 10*a*tan(c/2 + (d*x)/2)^8 - 10*a*tan(c/2 + (d*x)/2)^9 + 4*a*tan(c/2 + (d*x)/2)
^10 + 18*a*tan(c/2 + (d*x)/2)^11 + 4*a*tan(c/2 + (d*x)/2)^12 - 10*a*tan(c/2 + (d*x)/2)^13 - 4*a*tan(c/2 + (d*x
)/2)^14 + 2*a*tan(c/2 + (d*x)/2)^15 + a*tan(c/2 + (d*x)/2)^16)) + (187*log(tan(c/2 + (d*x)/2) - 1))/(128*a*d)
- (443*log(tan(c/2 + (d*x)/2) + 1))/(128*a*d) + log(tan(c/2 + (d*x)/2)^2 + 1)/(a*d)